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Abstract
The general solutions of the Schrödinger equation for a non-central potential are
obtained by using the Nikiforov–Uvarov method. The Schrödinger equation
with general non-central potential is separated into radial and angular parts,
and energy eigenvalues and eigenfunctions are derived analytically. By
making special selections, the non-central potential is reduced to Coulomb
and Hartmann ring-shaped potentials, and the obtained results are compared
with the solutions of Coulomb and Hartmann potentials given in the literature.

PACS numbers: 03.65.Db, 03.65.Fd, 03.65.Ge

1. Introduction

One of the interesting problems of non-relativistic quantum mechanics is to find exact solutions
of the Schrödinger equation for certain potentials of physical interest. Exact solutions of this
equation are possible only for certain potentials such as Coulomb, Morse, Pöschl–Teller,
Hulthen and harmonic oscillator, etc [1]. Other exactly solvable ones are the ring-shaped
potentials introduced by Hartmann [2] and Quesne [3]. These potentials involve an attractive
Coulomb potential with a repulsive inverse square potential.

In recent years, considerable efforts have been made to obtain the analytical solution
of non-central problems. In particular, the Coulombic ring-shaped potential [4] revived in
quantum chemistry by Hartmann and co-workers [5] and the oscillatory ring-shaped potential,
systematically studied by Quesne [3], have been investigated from a quantum mechanical
viewpoint by using various approaches.

The Coulombic ring-shaped, or Hartmann, potential is

V = −Z
1√

x2
1 + x2

2 + x2
3

+
1

2
Q

1

x2
1 + x2

2

, Z > 0, Q > 0, (1)
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where Z = ησ 2 and Q = qη2σ 2 in the notation of Hartmann and of Kibler and Negadi [4].
This potential in the limiting case Q = 0 reduces to an attractive Coulomb potential and a
special case of the potential (in spherical coordinates)

V (r, θ) = α

r
+

β

r2 sin2 θ
+ γ

cos θ

r2 sin2 θ
(2)

introduced by Makarov et al [6]. This potential can be used in quantum chemistry and nuclear
physics to describe ring-shaped molecules such as benzene and interactions between deformed
pairs of nuclei. There are different methods used to obtain exact solutions of the Schrödinger
equation for a non-central potential which are supersymmetric (SUSYQM) [7, 8], path integral
representation [9, 10], Bessel [11] and dynamical (or non-invariance) group [12].

In this paper, we introduce an alternative, elegant and simple method for an algebraic
solution of the Schrödinger equation with non-central potential. This method is called
the Nikiforov–Uvarov (NU) method [13] and is based on solving the second-order linear
differential equations by reducing to a generalized equation of hypergeometric type.

The NU method is used to solve Schrödinger, Dirac, Klein–Gordon and Duffin–Kemmer–
Petiau wave equations in the presence of exponential-type potentials such as Woods–Saxon
[14], Pöschl–Teller [15] and Hulthen [16, 17]. The aim of this study is to show that the
Nikiforov–Uvarov method can be used to obtain exact solutions of non-central potentials.
Thus, radial and angular parts of the Schrödinger equation with non-central potential are
solved by the NU method and it is seen that this method is applicable not only to exponential
but also to non-central-type potentials.

This paper is arranged as follows: in section 2, the Schrödinger equation in spherical
coordinates for a particle in the presence of a non-central potential is separated into radial and
angular parts. In section 3, the Nikiforov–Uvarov method is given briefly. Then in section 4,
the solutions of the radial and angular parts of the Schrödinger equation and the special cases
of non-central, i.e., Hartmann and Coulomb potential, solutions are obtained and compared
with studies using different methods in the literature. Finally, the relevant results are discussed
in section 5.

2. Separating variables of the Schrödinger equation with non-central potential

In spherical polar coordinates, the Schrödinger equation for a particle in the presence of a
non-central potential V (r, θ) becomes

− h̄2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

]
ψ(r, θ, ϕ)

+

(
α

r
+

β

r2 sin2 θ
+

γ cos θ

r2 sin2 θ

)
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ). (3)

If we assign the corresponding spherical total wavefunction as ψ(r, θ, ϕ) = R(r)Y (θ, ϕ), we
get

1

R(r)

∂

∂r

(
r2 ∂R(r)

∂r

)
− 2mαr

h̄2 +
2mEr2

h̄2 +
1

Y (θ, ϕ)

1

sin θ

∂

∂θ

(
sin θ

∂Y (θ, ϕ)

∂θ

)

− 2m

h̄2

(
β

sin2 θ
+

γ cos θ

sin2 θ

)
+

1

Y (θ, ϕ)

1

sin2 θ

∂2Y (θ, ϕ)

∂ϕ2
= 0. (4)

Separating the Schrödinger equation into variables and selecting Y (θ, ϕ) = 
(θ)�(ϕ), the
following equations are obtained:

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2mr2

h̄2

(
E − α

r
− λ

r2

)
R(r) = 0, (5a)
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d2
(θ)

dθ2
+ cot θ

d
(θ)

dθ
+

(
λ − m2

sin2 θ
− 2m

h̄2

(
β + γ cos θ

sin2 θ

))

(θ) = 0, (5b)

d2�(ϕ)

dϕ2
+ m2�(ϕ) = 0, (5c)

where m2 and λ are separation constants. It is well known that the azimuthal angle solution of
equation (5c) is

�m = A eimϕ (m = 0,±1,±2, . . .).

Equations (5a) and (5b) are radial and polar angle equations, and they will be solved by using
the Nikiforov–Uvarov method [13], given briefly in the following section.

3. Nikiforov–Uvarov method

In this method, for a given real or complex potential, the Schrödinger equation in one dimension
is reduced to a generalized equation of hypergeometric type with an appropriate coordinate
transformation s = s(r) and it can be written in the following form:

ψ(s)′′ +
τ̃ (s)

σ (s)
ψ ′(s) +

σ̃ (s)

σ 2(s)
ψ(s) = 0, (6)

where σ(s) and σ̃ (s) are polynomials, at most second degree, and τ̃ (s) is a first-degree
polynomial. Hence, from equation (6), the Schrödinger equation and the Schrödinger-like
equations can be solved by means of the special potentials for some quantum mechanics
problems. To find the particular solution of equation (6) by separation of variables, if one
deals with the transformation

ψ(s) = φ(s)y(s), (7)

it reduces to an equation of hypergeometric type

σ(s)y ′′ + τ(s)y ′ + λ̄y = 0, (8)

and φ(s) is defined as a logarithmic derivative

φ′(s)/φ(s) = π(s)/σ (s). (9)

The other part y(s) is the hypergeometric-type function whose polynomial solutions are given
by the Rodrigues relation

yn(s) = Bn

ρ(s)

dn

dsn
[σn(s)ρ(s)], (10)

where Bn is a normalizing constant and the weight function ρ(s) must satisfy the condition

(σρ)′ = τρ. (11)

The function π and the parameter λ̄ required for this method are defined as follows:

π(s) = σ ′ − τ̃

2
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ , (12)

λ̄ = k + π ′. (13)

On the other hand, in order to find the value of k, the expression under the square root must be
the square of the polynomial. Thus, a new eigenvalue equation for the Schrödinger equation
becomes

λ̄ = λ̄n = −nτ ′ − n(n − 1)

2
σ ′′, (14)

where

τ(s) = τ̃ (s) + 2π(s) (15)

and its derivative is negative.
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4. Solutions of the radial and polar angle equations with the NU method

4.1. Eigenvalues and eigenfunctions of the radial equation

Assuming that R(r) = (1/r)F (r) is bounded as r → 0, the radial Schrödinger equation given
in equation (5a) is

F ′′(r) +

(
2mE

h̄2 − 2mα

h̄2r
− �(� + 1)

r2

)
F(r) = 0. (16)

It is obvious that equation (16) is the same as the problem of an electron in a Coulomb-like
field. Letting

2mE

h̄2 = −ε2,
2mα

h̄2 = b2, λ = �(� + 1), α = −Ze2,

and substituting these expressions in equation (16), one obtains

F ′′(r) + (−ε2r2 − b2r − λ)
1

r2
F(r) = 0. (17)

If we apply the NU method by comparing equation (17) with equation (6), the following
expressions are obtained:

τ̃ = 0, σ = r, σ̃ = −ε2r2 − b2r − λ.

Inserting these polynomials in equation (12), we achieve the π function as

π = 1
2 ± 1

2

√
4ε2r2 + 4r(k + b2) + 4λ + 1. (18)

According to the NU method, the expression in the square root must be the square of the
polynomial.

Hence, we can determine that the constant k by using the condition that the discriminant
of the square root is zero, that is

k = −b2 ± 2
√

ε2
(
� + 1

2

)
. (19)

In view of that, one can find new possible functions for each k as

π =




1

2
±

[√
ε2r +

(
� +

1

2

)]
, for k = −b2 + 2

√
ε2

(
� + 1

2

)

1

2
±

[√
ε2r −

(
� +

1

2

)]
, for k = −b2 − 2

√
ε2

(
� + 1

2

)
.

(20)

For the polynomial of τ = τ̃ + 2π which has a negative derivative, we select

k = −b2 − 2
√

ε2
(
� + 1

2

)
and π = 1

2 − [√
ε2r − (

� + 1
2

)]
.

With this selection and λ̄ = k + π ′, τ and λ̄ can be written as, respectively,

τ = 2
(
� + 1 −

√
ε2r

)
, (21)

λ̄ = −b2 −
√

ε2(2� + 2). (22)

Comparing the definition of λ̄N in equation (14) with the equation

λ̄N = 2N
√

ε2, (23)

the exact energy eigenvalues of the radial part of the Schrödinger equation with non-central
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potential are derived as

EN = −mZ2e4

h̄2

1

2(N + � + 1)2
, (24)

where N denotes the radial quantum number.
Using σ and π in equations (9)–(11), one can find wavefunctions y(r) = yN�(r) and φ(r)

from equation (7)

FN�(z) = CN�z
�+1 exp

(
− z

2

)
L2�+1

N (z), (25)

where L2�+1
N (z) stands for the associated Laguerre functions whose argument is equal to

z = 2µZe2

h̄2(N+�+1)
r and CN� is the normalization constant determined by

∫ ∞
0 F 2

N�(r)dr = 1 [18].
Consequently, the corresponding normalized wavefunctions are found to be

Fn′�(r) =
(

µZe2

h̄2n′

)1/2 (
(n′ − � − 1)!

n′�(n′ + � + 1)

)1/2 (
2µZe2

h̄2n′

)�+1

r�+1

× exp

(
−2µZe2r

h̄2n′

)
L2�+1

n′−�−1

(
2µZe2

h̄2n′ r

)
, (26)

where n′ = N + � + 1. This equation also stands for the solution of the radial Schrödinger
equation with the Coulomb potential, since the radial Schrödinger equation with non-central
potential contains only Coulombic potential terms.

4.2. Eigenvalues and eigenfunctions of the polar angle equation

We are now going to derive eigenvalues and eigenfunctions of the polar angle part of the
Schrödinger equation with a similar method as given in section 4.1.

Introducing a new variable x = cos θ , equation (5b) is brought to the form

d2
(x)

dx2
− 2x

1 − x2

d
(x)

dx
+

(
λ(1 − x2) − m2 − 2m

h̄2 (β + γ x)

(1 − x2)2

)

(x) = 0. (27)

Comparing with equation (6), the following expressions are obtained: τ̃ = −2x, σ = 1 − x2

and σ̃ = −λx2 − γ x + (λ − m2 − β). Putting them in equation (12), the function π is

π = ±
√

x2(λ − k) + γ x − (λ − m2 − β − k).

According to the NU method, the expression in the square root must be the square of the
polynomial. So, one can find new possible functions for each k as

π = ±




x

√
m2 + β + u

2
+

√
m2 + β − u

2
, for k = 2λ − m2 − β

2
− 1

2
u,

x

√
m2 + β − u

2
+

√
m2 + β + u

2
, for k = 2λ − m2 − β

2
+

1

2
u,

(28)

where u =
√

(m2 + β)2 − γ 2.
For the polynomial of τ = τ̃ + 2π which has a negative derivative,

τ = −2

√
m2 + β − u

2
− 2x

(
1 +

√
m2 + β + u

2

)
, (29)

λ̄ = k + π ′ and another definition λ̄n = −nτ ′ − n(n−1)

2 σ ′′ are given as follows, respectively,

λ̄ = 2λ − (m2 + β)

2
− 1

2
u −

√
m2 + β + u

2
, (30)
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λ̄n = 2n

(
1 +

√
m2 + β + u

2

)
+ n(n − 1). (31)

To obtain En = λ − (m2 + β), we compared equations (30) and (31),

(2n + 1)

√
m2 + β + u

2
+

u − (m2 + β)

2
+ n(n + 1) = λ − (m2 + β). (32)

Using the definition of λ = �(� + 1), from equation (32) one obtains

� =
√

m2 + β +
√

(m2 + β)2 − γ 2

2
+ n. (33)

If we substitute equation (33) into eigenvalues of the radial part of the Schrödinger equation
with non-central potential, which has a similar radial Schrödinger equation to the Coulomb
potential, equation (24), we find that the final energy eigenvalues for a bound electron in a
Coulomb potential as well as in a combination of non-central potentials given by equation (5b)
are

EN = −mZ2e4

h̄2

1

2

(
N +

√
m2+β+

√
(m2+β)2−γ 2

2 + n + 1

)2
. (34)

Then, the wavefunction of the polar angle part of the Schrödinger equation, using σ and π in
equations (9)–(11), is obtained:

φ = (1 − x)B+C/2(1 + x)B−C/2, (35)

ρ = (1 − x2)B
(

1 + x

1 − x

)−C

, (36)

yn = Bn(1 − x)−(B+C)(1 + x)−(B−C) dn

dxn
[(1 + x)n+B−C(1 − x)n+B+C], (37)

where B =
√

m2+β+u

2 and C =
√

m2+β−u

2 . The polynomial solution of yn is expressed in terms
of a Jacobi polynomial which is one of the orthogonal polynomials, giving ≈P (B+C,B−C)

n (x).
Substituting equations (35) and (37) into equation (7), the corresponding wavefunctions are
found to be


n(x) = Nn(1 − x)(B+C)/2(1 + x)(B−C)/2P (B+C,B−C)
n (x), (38)

where Nn is the normalization constant determined by
∫ +1
−1 [
n(x)]2 dx = 1 and using the

relation orthogonality of Jacobi polynomials [18, 19], the normalization constant becomes

Nn =
√

(2n + 2B + 1)�(n + 1)�(n + 2B + 1)

22B+1�(n + B + C + 1)�(n + B − C + 1)
. (39)

4.3. A special case: Hartmann ring-shaped potential

The ring-shaped Hartmann potential is

VH(r, θ) = ησ 2ε0

(
2a

r
− qηa2

r2 sin2 θ

)
. (40)

Here, a = h̄2/µe2 (Bohr’s radius), ε0 = −µe4/2h̄2 (ground-state energy of the hydrogen
atom), η and σ are dimensionless positive parameters which range from about 1 to 10 in
theoretical chemistry applications and q is a real parameter. If we compare the Hartmann
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potential with the generalized non-central potential given in equation (2), the following terms
are obtained: α = −ησ 2e2, β = qη2σ 2h̄2

2µ
and γ = 0. Using the similarity of separated equations

for the Hartmann potential to those of the hydrogen atom, one can write immediately from
equation (34), the energy spectrum for the Hartmann system is given by

EN = − µ(ησ 2)2e4

2h̄2

(
N +

√
m2 + qη2σ 2h̄2

2µ
+ n + 1

)2 , (41)

and radial wavefunctions of the Hartmann potential are given in equation (26) and are in
agreement with [2, 7, 20].

The polar angle wavefunction of the Hartmann potential is obtained by reducing the polar
angle wavefunctions of the generalized non-central potential as given in equation (40). When
γ = 0, we simply get the parameters as u = m2 + β, B = (m2 + β)1/2 and C = 0. With the
selection of m′ = B, we obtain


n(cos θ) =
√

(2n + 2m′ + 1)�(n + 1)�(n + 2m′ + 1)

22m′+1�(n + m′ + 1)�(n + m′ + 1)
(sin θ)m

′
P (m′,m′)

n (cos θ), (42)

Here, P (m′,m′)
n (cos θ) is given in terms of ultraspherical polynomials as [18]

P (m′,m′)
n (cos θ) = �(2m′ + 1)

�(m′ + 1)

�(n + m′ + 1)

�(n + 2m′ + 1)
P (λ)

n (cos θ),

and using the definition of ultraspherical polynomials we get equation (42) as follows:


�m′(cos θ) =
√

(2n + 2m′ + 1)n!

2�(n + 2m′ + 1)
(sin θ)m

′
[�−m′

2 ]∑
ν=0

(−1)ν�(2� − 2ν + 1)

2�ν!(� − m′ − 2ν)!�(� − ν + 1)

× (cos θ)(�−m′−2ν), (43)

where � = n+m′, n = 0, 1, 2, . . . . Therefore, we derived the polar angle wavefunctions of the
Hartmann potential by reducing the polar angle wavefunctions of the generalized non-central
potential, and equation (43) is consistent with [2].

5. Conclusions

We have obtained the exact solutions of the radial and angular parts of the Schrödinger
equation for non-central potential using the Nikiforov–Uvarov method. This method is usually
used in solving analytically Schrödinger, Dirac, Klein–Gordon and Duffin–Kemmer–Petiau
wave equations in the presence of exponential-type potentials. In this study, we applied the
NU method to non-central potentials by separating the Schrödinger equation into radial and
spherical polar coordinates, so we generalized the feasibility of the NU method. Within
the framework of this analytical treatment, the radial and polar Schrödinger equation has
been transformed to a generalized equation of hypergeometric type, and we have clarified
that the Schrödinger equation with respect to confluent hypergeometric polynomials can be
exactly solved. As far as we know, this methodology has not been perceived until now
for this potential shape. Energy eigenvalues are obtained in a Coulomb potential as well
as in a combination of non-central potentials. This calculation has been done by the path
integral solution of the system with/without using Kustannheimo–Stiefel transformation in
[9]. Energy eigenfunctions are derived for radial and polar angle parts of the Schrödinger
equation with non-central potential, and radial and polar angle wavefunctions are found in
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terms of Laguerre and Jacobi polynomials, respectively. When α = −ησ 2e2, Z = ησ 2,
β = qη2σ 2h̄2

2µ
and γ = 0, a non-central potential reduces to the Hartmann potential. The energy

spectrum of the Hartmann system is obtained as in [2, 7] and polar angle wavefunctions are
found in terms of ultraspherical Jacobi polynomials. The relevant results of the Schrödinger
equation for not only non-central but also special cases of non-central, i.e., Hartmann and
Coulomb, potentials are compared with studies using different methods in the literature.
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